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Abstract

Microplane models are based on the assumption that the constitutive laws of the material may be established be-
tween normal and shear components of stress and strain on planes of generic orientation (so-called microplanes), rather
than between tensor components or their invariants. In the kinematically constrained version of the model, it is assumed
that the microplane strains are projections of the strain tensor, and the stress tensor is obtained by integrating stresses
on microplanes of all orientations at a point. Traditionally, microplane variables were defined intuitively, and the
integral relation for stresses was derived by application of the principle of virtual work. In this paper, a new ther-
modynamic framework is proposed. A free-energy potential is defined at the microplane level, such that its integral over
all orientations gives the standard macroscopic free energy. From this simple assumption, it is possible to introduce
consistent microplane stresses and their corresponding integral relation to the macroscopic stress tensor. Based on this,
it is shown that, in spite of the excellent data fits achieved, many existing formulations of microplane model were not
guaranteed to be fully thermodynamically compliant. A consequence is the lack of work conjugacy between some of the
microplane stress and strain variables used, and the danger of spurious energy dissipation/generation under certain load
cycles. The possibilities open by the new theoretical framework are developed further in Part II companion paper.
© 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Microplane model; Constitutive model; Thermodynamics; Anisotropy; Concrete; Damage; Plasticity

1. Introduction

Since it was first proposed by Bazant and Oh (1983), the microplane approach has become progressively
more popular for the description of the constitutive behavior of a number of engineering materials such as
concrete, rock, ceramics, or ice (Bazant and Gambarova, 1984; Bazant and Oh, 1985; Bazant and Prat,
1987, 1988a,b; Carol et al., 1991, 1992; Cofer, 1992; Ozbolt and Bazant, 1992; Cofer and Kohut, 1994;
Bazant et al., 1996a,b, 2000a,b; Fichant, 1996; Ozbolt and Bazant, 1996; Kuhl et al., 1998).

* Corresponding author. Fax: +34-93-401-7251.
E-mail address: ignacio.carol@upc.es (I. Carol).

0020-7683/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.
PII: S0020-7683(00)00212-2



2922 L Carol et al. | International Journal of Solids and Structures 38 (2001) 2921-2931

The main idea behind microplane models consists in developing the constitutive laws for the two- or
three-dimensional continuum starting from the behavior of a plane of generic orientation, which is then
integrated over all possible directions in space. This idea is actually not new. The classical elasto-plastic
failure envelopes such as Tresca and Mohr-Coulomb may be also derived from the idea of a limit o—
condition for a generic plane (Mohr, 1900). The slip theory of plasticity (Taylor, 1938; Batdorf and
Budiansky, 1949) and the viscoplastic multilaminate model for fractured rocks and soils (Zeinkiewicz and
Pande, 1977; Pande and Sharma, 1983) were also based on similar concepts. The main difference between
the microplane model and the previous similar models is the kinematic constraint assumed, and the
principle of virtual work (PVW) applied to obtain the corresponding integral micro-macro relation for
stresses. This is well documented in the literature, (Carol and Bazant, 1997), and is only briefly summarized
in Section 2.

Although successfully implemented and extensively verified with experimental results (Bazant and Prat,
1988b; Carol et al., 1992, Bazant et al., 1996b, Bazant et al., 2000a) the traditional microplane models were
to some extent based on intuitive arguments, and their thermodynamic consistency could not be guaranteed
in all loading situations. It turns out that, in the way they have been introduced, some of the stress variables
used at the microplane level are not conjugate quantities to their strain counterparts. The lack of full
thermodynamic consistency (actually common to many constitutive models used in engineering practice)
seems to have had little influence on the representation of available experimental data, given the excellent
fits obtained under numerous different loading conditions. But no doubt there must exist load sequences for
which energy is spuriously dissipated or generated and could be large enough to distort the predicted
material response. In any case, it is obvious that an approach in which conjugacy of variables and ther-
modynamical consistency is assured should always be preferable.

A first simple version of such a consistent approach with conjugate volumetric and deviatoric microplane
stresses has recently been proposed in the context of the extension of microplane theory to finite defor-
mations (Carol et al., 1998), and is now developed in some detail for small strain in the form of a two-part
paper. In this first part, the new fundamental assumption of a free-energy potential and the most immediate
consequences, such as definition of consistent microplane stresses and integral micro-macro relations, are
developed. This is done in Section 3. In Section 4, the resulting integral formula is compared to the tra-
ditional expressions presented in Section 2. Differences are discussed and interpreted, highlighting under
what conditions both formulations could be considered equivalent. Section 5 presents an example of a
specific microplane formulation that can lead to spurious energy dissipation or generation. Finally, the first
set of conclusions is given in Section 6.

2. Traditional derivation of microplane models via PYW

Microplane models construct the “macroscopic’ response of the material (constitutive laws relating the
tensors of stress and strain) from the cumulative effect of processes taking place on elementary planes of
different orientations called microplanes. The orientation of each microplane is described by the unit
normal vector, n. The deformation and stresses on the microplane are characterized by the normal and
shear strains, ey, &r (with Cartesian components ¢r,), and the corresponding microplane tractions, oy, and
o7 (with Cartesian components ot,). With the exception of the earliest formulations (Bazant and Oh, 1983;
Bazant and Gambarova, 1984), which worked very well for distributed multidirectional tensile cracking but
could not cope with the nonlinearity under compression and shear, most versions of the model assume the
normal components to be further split into their volumetric and deviatoric parts, ¢y and &p (or oy and op).
The kinematic constraint means that the normal and shear strains on the microplane are assumed equal to
the projections of the macroscopic strain tensor ¢; (as opposite to a static constraint in previous models
based on similar ideas):
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. . O
exn = mnje;  (or, with split, ey = %s,-j, &p = EN — &), )

. oy 1, 1, o, ] ,
ET, = &ylt; — NNy = 384T + 5601 — MiTljEN, = 510 4 1;0; — 2mngn, e,
where the lowercase subscripts in latin refer to Cartesian coordinates x; (i = 1,2,3), and subscript repetition

implies summation. The same relations may be expressed in compact notation as

en =N :¢ (or, with split, ey =V :¢, ep =D : g),

2)

ST:TZS,

where the projection tensors N, V, D (of second order) and T (of third order) have the Cartesian com-
ponents,

5,
Ny = nn;, Vij:?ja

5 { 3)
D,‘/ = nn; — %, Trij = 5 [n,«é_,-, + l’ljéi,- — Zninjn,].

Material laws are constructed at the microplane level in the form of functions,
oN = .g;N(SN) (Or, with Spllt, oy = e%\/(8\/), op = eg;])(cﬁ']))),

oT = FT(8T,8\/).

4)

With the kinematic constraint and general microplane material laws, equilibrium between the macro
and microstresses is not possible in a ‘strong’ sense (i.c., the static constraint dual to Eq. (1) is not satisfied).
The weak form of micro-macro equilibrium equations can be constructed using the principle of virtual
work,

?o 108 = 2/[0'1\1 den + o7 - der|dQ, (5)
Q

where Q is the surface of a unit hemisphere (representing the set of all possible microplane orienta-
tions). Substituting dey = N : d¢ and der = T : ¢ and taking account of the independence of individual
components of the (symmetric) virtual strain tensor, we get the integral micro—macro equilibrium con-
dition,

3 3
o 2n/QaN d +2n/go-T d (6)
or in index notation
3 3 O'Tr
0y = ﬂ /!;O'Nnﬂ’lj dQ + ﬂ /Q 7 [ni(srj + nj5,.i] dQ (7)

(when rewriting the second integral, the last term in the definition of T (Eq. (3), fourth term) has been
omitted because ot is a vector contained in the microplane and therefore o1.n, = 0).

In previous models with volumetric-deviatoric split similar to (Bazant and Prat, 1988a), oy in the
first term of the previous equation was directly replaced by av + op. Since, according to the second term of
Eq. (4), volumetric stress gy depends only on ¢y and therefore is the same for all microplanes, Eq. (6) was
written as

3 3
a:6v1+—/aDNdQ+—/aT-TdQ, (8)
2n Jo 21 Jo

where I = 3V is the second-order identity tensor (Kronecker delta).
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3. Thermodynamic derivation of microplane stresses and equilibrium

The first standard assumption in a thermodynamically consistent constitutive framework is the existence
of a free-energy potential per unit mass of material in isothermal conditions, ¥™(s, q), where ¢ is a given
set of internal variables that fully define the state of the material at any point of the loading history. The
fundamental assumption for the new, thermodynamically consistent microplane approach is that the
macroscopic free energy may be written as the integral of some free energy defined at the microplane level,
Poe:

3 .
maC:_ mic . Q
v = [ g de, o)

where ¢, is the vector collecting the normal and shear strain components for the microplane with normal n.

If the material density is p,, it is a standard procedure (Coleman and Gurtin, 1967; Ilankamban
and Krajcinovic, 1987) to obtain the stress conjugate to ¢ as the derivative of the free energy per unit
volume:

0lpy ™
o % (10)

In our case, this formula may be applied to Eq. (9). Using the chain rule of differentiation on the right-hand
side, one obtains
3 9[po 'P?;ic] 3 9[po ?’?;ic] ot,

dQ=—

= —LdQ. 11
T o O¢ 21 Jo ot @sd (11)

Assuming that the strain components on the microplane are ey, and &r, and that they are related to the
macroscopic strain via the kinematic constraint given by the first and fourth terms of Eq. (1) or Eq. (2), we
may expand the two terms of the product inside the integral, obtain the strain derivatives and express

31 3p 7] 3 [ Aol
=— [ ————=NdQ+— - TdQ. 12
4 ZTE 0 aﬁN d + 2TC /Q 68'[ d ( )

This equation turns out to be equivalent to Eq. (6) if we define

Ol ?5"] e 0[po¥5"]
N aSN ’ T aST '

(13)

This is actually a consistent definition of the microplane stresses oy and et as the work-conjugate quantities
of the microplane strains ey and &r.

If, on the other hand, we consider the formulation with split, in which the microplane strains are ¢y, ép
and &r, developing the second term of Eq. (11) leads to

3 3 3
=— VdQ + — DAQ +— - TdQ 14
¢ 21t/QGV +2n/QGD +2n/QGT (14)
with the consistent microplane stresses oy, op and ot defined as

0 [Po 'P?)lic] 0 [Po lp?zlic] 0 [Po lp?zﬁc} '

oy = op = T =
aSV ’ aSD 68"[



L Carol et al. | International Journal of Solids and Structures 38 (2001) 2921-2931 2925

4. Discussion

Formulas (12) and (14) obtained by differentiation of the free energy may now be compared to their
counterparts in the traditional microplane formulations (7) and (8). The first observation is that, for the
Sformulation without deviatoric—volumetric split, the derivation from the free energy leads to identical
equations as the original formulation, i.e., the original integral formula for stresses was thermodynamically
consistent (although for full consistency of the formulation, the laws ((4), first and second terms) must also
be derived from a potential).

In contrast, for the formulation with split of normal components, the two derivations exhibit some dif-
ferences. Comparing Egs. (8) and (14), we notice the following:

(a) The simple term oyI in Eq. (8) is replaced by the integral involving the volumetric term (first on the
right-hand side) in Eq. (14),

(b) The factor N multiplying op in the deviatoric integral of Eq. (8) is replaced by D = N — V in Eq.
(14).

The first difference (a) only vanishes if oy may be assumed to be a function of &y but not of ¢p and er. In
that case, oy would be the same for all microplanes and could be taken out of the integral in Eq. (14), that
term becoming

3 1 1
> Q=— [ oyId@=—oyl [ dQ = oyl 1
ZR/QGVVd ZR/QGV d Y /Qd ov (16)

Since in the first term of Eq. (15), we have defined oy = d[p, ¥5] /dey, having oy independent of & and
ey implies that the mixed derivatives &% [p, 5] /dey0ep and 02 [p, ¥5*| /deyder vanish, but then (because of
the remaining definitions ((15), second and third terms)) neither op nor et can depend on ey either. In this
situation, the microplane free energy must have the following decoupled form:

lefrzlic('gVy ép, €T, Q) = qjllnic('gV7 ‘I) + 'PIZniC(SDa ér, q) (17)

Note that the very assumption of a microplane free energy ?’?fc which depends on the strains on the same
microplane exclusively may be in itself quite restrictive. For instance, the latest practical formulation for
concrete M4 (Bazant et al., 2000b), and also its predecessor M3 (Bazant et al., 1996a), use a procedure to
calculate oy and op on each microplane which makes them actually dependent on deviatoric strains ep on
all other microplanes. That was a way to combine the advantages of the model without split in tension with
those of the split in compression, and allowed a much better fit of experimental data for concrete. That
same feature, however, makes those formulations more general than the thermodynamic framework
considered in this paper, and for them, the question of work conjugacy must be addressed in a different way
(Bazant et al., 2000b). In contrast, earlier versions of the model which, in retrospective we can call M1
(Bazant and Oh, 1983; Bazant and Gambarova, 1984) and M2 (Bazant and Prat, 1988a,b; Carol et al.,
1992), did conform to assumption (9), and most of them actually also to Eq. (17). This might not be ap-
parent in some cases, in which the microplane law for the shear components involved some form of de-
pendence on the volumetric strain in order to introduce the frictional effect of hydrostatic pressure on the
deviatoric behavior. Nevertheless, the nature of that dependence is that of a shear yield limit that depends
on normal stress, while unloading properties (which relate to stored energy) remain uncoupled. For this
reason, this effect may be in general introduced via the history variables ¢, with the practical consequence
that, for all those formulations included in the framework, difference (a) is only apparent and does not
imply real inconsistency.

More essential, however, is the difference (b). In effect, by developing the second integral in Eq. (14), we
can write
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/GDDdQ:/aDNdQ— V/aDdQ. (18)
Q Q Q

The second term on the right-hand side vanishes only if the average deviatoric stress is zero, and this is
actually only satisfied for a very narrow class of models. The most important member of this class is
isotropic linear elasticity, which is described by the microplane free-energy potential

Po'fjrgr;ic(ﬁv, €D, &r) = %K‘O%/ + G[EIZ) T |8T|2} ’ v

where K is the macroscopic bulk modulus and G is the macroscopic shear modulus of elasticity. The mean
value of ep over all the microplanes is always zero, and as op = 0 [po ‘I"};ic] /0ep = 2Gep, the mean value of
op is zero as well. Note, however, that as soon as any nonlinear behavior is considered, this condition is
immediately violated. Exception to this rule would only take place in a two-dimensional version of the
microplane model (with integration over a unit semicircle rather than a unit hemisphere), provided that the
deviatoric stress depends only on the deviatoric strain, and that the response is symmetric in tension and in
compression. In other words, the deviatoric law must be such that if a deviatoric strain evolution é&p(#)
produces stress op(¢), then —ep(#) produces —op(¢). This condition is satisfied for example by nonlinear
hyperelastic models with a deviatoric law of the form,

0p ZfD(ED)7 fD(—ED) = —fD(SD), (20)

i.e., fp is an odd function of ¢p. In two dimensions, each microplane may be associated with the perpen-
dicular one, and the deviatoric strains on these associated microplanes have the same magnitude and
opposite signs. If the deviatoric law is symmetric, the resulting deviatoric stresses on the associated mi-
croplanes also have the same magnitude and opposite signs, and their mean value over all the microplanes
is zero.

Unfortunately, the precedent reasoning cannot be extended to three dimensions or to general (nonodd)
functions fp(ep), and therefore, the conclusion is that early practical formulations of concrete microplane
models with volumetric—deviatoric split did not satisfy thermodynamic consistency. In those formulations,
a well-defined energy potential did not exist, and in general, the microplane stresses oy and ap were not the
work-conjugates of their counterparts ey and ep. Also, the possibility existed of spurious dissipation/gen-
eration of energy taking place for appropriately designed load cycles, as shown in the example developed in
Section 5. It is finally noted that the thermodynamically consistent formula (14) may also be derived from
the PVW but only if the contribution of the normal microplane stresses to the virtual work in Eq. (5) is
rewritten as [,,[ov dey + op dep| dQ.

5. Example of spurious dissipation

To illustrate the problem, consider a model with microplane laws in secant format proposed in Bazant
and Prat (1988a), which was developed later in a damage format in Kuhl et al. (1998). In such formulation,
the microplane constitutive equations read

oy = [1 — dv]3K8V, 0p = [1 — dD]ZGSD, oT = [1 — dﬂ2GsT, (21)

where dy, dp and dr are scalar damage parameters, initially set to zero. The simplest assumption is that dy
depends only on the history of ey, dp depends only on the history of ¢p, and dr only on the history of |er|.
Parameter dy is then the same on all microplanes while dp and dr in general vary as functions of the
microplane orientation.

Substituting the microplane laws into the traditional stress-evaluation formula (8) and using Eq. (2)
yields
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3G
O'—[l—dv]3KISV+—/1—dDN8Dd.Q+— [l—dT]TT~8TdQ
Q
3G 3G
—( -k @l:a+2 0 [ (1= N @ DdQis+=" [ (1 —di]T" TdQ: s (22)
Q Q
=E:¢,
where T is a third-order tensor with components T, = T, and
3G 3G T
E:[l—dv]KI®I+7 [l—dD]N®DdQ+? [1—dr]T" - TdQ (23)
Q Q
is the secant macroscopic stiffness tensor. Due to the presence of the term,
/[1 —dp]N®@DdQ = /[1 —dp|D®DdAR+V ® /[1 — dp|DdQ, (24)
Q Q Q

the stiffness tensor E in general does not exhibit major symmetry. Only in the case of isotropic damage, we
can take the factor 1 — dp out of the integral and write

V®/[1—dD]DdQ:[l—dD]V®/DdQ:0 (25)
Q Q
since
/DdQ:/NdQ—V/dQ:Z—nI—VznZO. (26)
Q Q Q 3

The lack of major symmetry would not necessarily be in contradiction to the laws of thermodynamics if
it were caused by frictional phenomena. However, this is not the case here. During unloading and reloading
below the maximal previously reached strain level, the damage parameters remain constant and the ma-
terial responds as a linear elastic one with stiffness E. The lack of major symmetry then implies that no
elastic potential can exist, and the total work over a closed cycle is in general not zero. For certain loading
cycles, energy is consumed, and for others, it is extracted from the material (without changing the internal
variables).

A loading cycle generating energy can be constructed as follows: For simplicity, we assume that the shear
microplane stresses do not arise, i.e., we set dr = 1 on all microplanes. The other damage parameters are
initially zero. Now we apply a strain cycle consisting of four steps:

. application of purely deviatoric strain, eg;

. application of additional volumetric strain, &y/;
. removal of the deviatoric strain; and

. removal of the volumetric strain.

W N =

When this cycle is applied for the first time, the damage parameters grow. For a typical nonsymmetric
deviatoric law, the deviatoric damage parameter dp is larger on microplanes that experience deviatoric
tension than on those that are under deviatoric compression of the same magnitude (Fig. 1a). When the
same cycle is repeated, all microplane strain components remain within the previously reached limits, and
so damage does not grow any more. The total work during this closed cycle should be zero, but we will
show that this is not the case.

In the first step (of the second cycle), the volumetric strain remains zero, and the deviatoric microplane
strain ep = D : ¢y has a zero mean over all the microplanes. The macroscopic stress evaluated according to
Eq. (8),
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Fig. 1. (a) Deviatoric microplane law and (b) distribution of deviatoric microplane strain and stress.

3
= — NdQ 2
c 211:/9013 d (27)
has the mean value
3 1
O'm:VIO':%/QGDVINdQ:%/QGDdQ (28)

because V : N = d,nn;/3 = nn;/3 =1/3. The last term represents the mean value of op over all the mi-
croplanes,

1 G
Oop = % QO’DdQ :E /Q[l —dD}SDdQ, (29)

which is negative due to the fact that damage on planes with ¢p > 0 is larger than on those with ¢p < 0 (Fig.
1b). This means that the macroscopic stress tensor after the first step has the volumetric part ¢, = 6p and
the deviatoric part
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Table 1
Loading cycle
Step P ay oD o Jo:de
0 0 0 0 o o
1 € 0 [1 — dD]ZGD € So + EDI So 90/2
2 ey + &l [1 - d\/]3K8() [1 - dD]ZGD 1€ Sy + [6'[) + UO]I 3[6]3 + O’()/Z]So
3 80[ [1 — dv}sKﬂo 0 0'01 —Sp 90/2
4 0 0 0 0 —3008/2
Total dissipation > =3ape
3 _
so=06—onl =— [ [op — ap]N dQ. (30)
2n Jo

In the second step, the volumetric stress is increased by gy = [l — dy]3K¢, while the deviatoric part of the
stress tensor remains unchanged. In the third step, the deviatoric stress is removed, and the volumetric
stress changes by —a6p. Finally, after the fourth step, all stresses disappear and the cycle is closed. Individual
steps of the cycle are summarized in Table 1.

Now, let us look at the total work during the cycle, § ¢ : de. The work done by the deviatoric stresses
during the first step is canceled by the work done during the third step, and the work done by o, during the
second step is canceled by the work done during the fourth step. However, the work done by 6p during the
second step has no counterpart since Gp is not present during the fourth step. Consequently, the total work
done during the cycle is apl : &g = 3Gpey # 0. The sign of this work depends on ¢, since ap is always
negative. For positive &, we obtain a negative work over the cycle, which means that the material supplies
energy to its environment without changing its internal state.

6. Concluding remarks

A new, simple, thermodynamically-consistent framework is presented for the formulation of microplane
models. The main assumption is that the macroscopic free energy may be obtained as the integral over all
microplane orientations of a microplane free-energy function, which depends on the microplane strains and
the internal variables. This assumption does not contradict most of the early versions of microplane models
for concrete with and without split of normal components (M1 and M2), but leaves out the more recent M3
and M4 models, for which the free energy of the various microplanes may not be written in a decoupled
form.

The new formulation leads to a consistent definition of the microplane stresses which are conjugate to
the microplane strains, and to the integral form of the micro-macro equilibrium equation which applies to
those stresses.

A comparison with the previous microplane models not precluded by the new formulation leads to the
conclusion that, while the earliest model without split (M 1) was correct, the following version of microplane
model with the split of normal components (M2) cannot be guaranteed to be thermodynamically consis-
tent. In that case, microplane stresses oy and op are not necessarily work conjugates to their strain
counterparts ey and ep, and neither are in general their sums on = oy + op and ey = &y + &p. The integral
micro—macro relation for stresses does not coincide either with the one obtained from the thermodynamic
derivation, and the model cannot be guaranteed to be free of spurious dissipation or generation of energy.
Models with “symmetric’’ laws for the normal deviatoric component (in the sense of symmetric behavior in
tension and in compression) are less sensitive to this problem.
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In a companion paper “Part 11, the new thermodynamic derivation is developed further by applying
standard concepts such as the Coleman method and Clausius—Duhem inequality at both microplane and
macroscopic levels, and the resulting equations are illustrated with two example formulations of damage
and plasticity (Kuhl et al., 2000).
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